最新初中数学知识点汇总(推荐12篇)
时间:2025-06-18 作者:78派网相关推荐
在平凡的学习生活中,不管我们学什么,都需要掌握一些知识点,知识点是指某个模块知识的重点、核心内容、关键部分。相信很多人都在为知识点发愁,下面是小编精心整理的初中数学必背知识点总结,欢迎大家分享。
初中数学知识点汇总 篇1
三角形两边:
定理三角形两边的和大于第三边。
推论三角形两边的差小于第三边。
三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半。
三角形的重心:
三角形的重心到顶点的距离是它到对边中点距离的2倍。
在三角形中,连接一个顶点和它对边中点的.线段叫做三角形的中线,三角形的三条中线交于一点,这一点叫做“三角形的重心”。
与三角形有关的角:
1、三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。
2、直角三角形两个锐角的关系:直角三角形的两个锐角互余(相加为90°)。有两个角互余的三角形是直角三角形。
3、三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角;三角形三个外角和为360°。
全等三角形的性质和判定:
全等三角形共有5种判定方式:SSS、SAS、ASA、AAS、HL。特殊情况下平移、旋转、对折也会构成全等三角形。
(边边边),即三边对应相等的两个三角形全等。
(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。
(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。
(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。
(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。
等边三角形的判定:
1、三边相等的三角形是等边三角形(定义)。
2、三个内角都相等的三角形是等边三角形。
3、有一个角是60度的等腰三角形是等边三角形。
4、有两个角等于60度的三角形是等边三角形。
初中数学知识点汇总 篇2
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的.两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
1、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
初中数学知识点汇总 篇3
三角形的知识点
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的分类
3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7、高线、中线、角平分线的意义和做法
8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9、三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余
推论2三角形的一个外角等于和它不相邻的两个内角和
推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半
10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11、三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
四边形(含多边形)知识点、概念总结
一、平行四边形的定义、性质及判定
1、两组对边平行的四边形是平行四边形。
2、性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
3、判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
4、对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1、定义:有一个角是直角的平行四边形叫做矩形
2、性质:矩形的四个角都是直角,矩形的对角线相等
3、判定:
(1)有一个角是直角的.平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4、对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定
1、定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2、s菱=争6(n、6分别为对角线长)
3、判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线互相垂直的平行四边形是菱形
4、对称性:菱形是轴对称图形也是中心对称图形
四、正方形定义、性质及判定
1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形
2、性质:
(1)正方形四个角都是直角,四条边都相等
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形
(4)正方形的对角线与边的夹角是45°
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形
3、判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等
(2)先判定一个四边形是菱形,再判定出有一个角是直角
4、对称性:正方形是轴对称图形也是中心对称图形
五、梯形的定义、等腰梯形的性质及判定
1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等
3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形
4、对称性:等腰梯形是轴对称图形
六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。
七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。
八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。
九、多边形
1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2、多边形的内角:多边形相邻两边组成的角叫做它的内角。
3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
8、公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
9、多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
10、多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形
(2)n边形共有n(n-3)/2条对角线
圆知识点、概念总结
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3、圆是以圆心为对称中心的中心对称图形
4、圆是定点的距离等于定长的点的集合
5、圆的内部可以看作是圆心的距离小于半径的点的集合
6、圆的外部可以看作是圆心的距离大于半径的点的集合
7、同圆或等圆的半径相等
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12、①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
14、切线的性质定理:圆的切线垂直于经过切点的半径
15、推论1经过圆心且垂直于切线的直线必经过切点
16、推论2经过切点且垂直于切线的直线必经过圆心
17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18、圆的外切四边形的两组对边的和相等,外角等于内对角
19、如果两个圆相切,那么切点一定在连心线上
20、①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-rr)
④两圆内切d=R-r(R>r)⑤两圆内含dr)
21、定理:相交两圆的连心线垂直平分两圆的公共弦
22、定理:把圆分成n(n≥3):
(1)依次连结各分点所得的多边形是这个圆的内接正n边形
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24、正n边形的每个内角都等于(n-2)×180°/n
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26、正n边形的面积Sn=pnrn/2p表示正n边形的周长
27、正三角形面积√3a/4a表示边长
28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29、弧长计算公式:L=n兀R/180
30、扇形面积公式:S扇形=n兀R^2/360=LR/2
31、内公切线长=d-(R-r)外公切线长=d-(R+r)
32、定理:一条弧所对的圆周角等于它所对的圆心角的一半
33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
初中数学知识点汇总 篇4
初中数学基础知识点
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
初中数学平行四边形的性质知识点
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
初中数学函数知识点总结
1.一次函数
(1)定义:形如y=kx+b(k、b是常数,且k≠0)的函数,叫做一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx(k为常数,k≠0)
所以,正比例函数是特殊的一次函数。
(2)一次函数的图像及性质:
1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3正比例函数的图像总是过原点。
4k,b与函数图像所在象限的关系:
当k>0时,y随x的'增大而增大;当k
当k>0,b>0时,直线通过一、二、三象限;
当k>0,b
当k0时,直线通过一、二、四象限;
当k
当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k
2.二次函数
(1)定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。
(2)二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0);
顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k));
交点式:
(3)二次函数的图像与性质
1二次函数的图像是一条抛物线。
2抛物线是轴对称图形。对称轴为直线x=-b/2a。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
3二次项系数a决定抛物线的开口方向。
当a>0时,抛物线向上开口;
当a
4一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab
5抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点;
Δ=b^2-4ac=0时,抛物线与x轴有1个交点;
Δ=b^2-4ac
3.反比例函数
(1)定义:形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
(2)反比例函数图像性质:
1反比例函数的图像为双曲线;
当K>0时,反比例函数图像经过一,三象限,是减函数;
当K
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
2由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
初中数学知识点汇总 篇5
一、初中数学基本概念
1.方程:含有未知数的等式叫做方程。
2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
3.二元一次方程:含有两个未知数,并且未知数的次数是1的二元一次方程。
4.二元一次方程组:由两个二元一次方程组成的方程组。
5.一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程。
6.一元二次方程的解:使一元二次方程左右两边相等的未知数的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判别式:当a是正数时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个不相等的实数根;当a是负数时,如果一元二次方程左右两边相等时,那么这个一元二次方程没有实数根;当a是零时,如果一元二次方程左右两边相等时,那么这个一元二次方程有两个相等的实数根。
9.函数:在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫做自变量。
10.一次函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的一次函数。
11.正比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成正比,那么称y是x的比例函数。
12.反比例函数:在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,并且这个数值在比例上成反比,那么称y是x的反比例函数。
13.平行四边形:在同一个平面内两组对角分别平行的四边形叫做平行四边形。
14.矩形:有一个内角是直角的平行四边形叫做矩形。
15.菱形:有两组邻边相等的平行四边形叫做菱形。
16.正方形:四边相等的矩形叫做正方形。
17.等腰梯形:两条腰相等的梯形叫做等腰梯形。
18.三角形:在同一个平面内由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
19.中线:连接一个顶点和它对边的中点的线段叫做中线。
20.高线:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做高线。
21.角平分线:三角形的一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做角平分线。
22.中位线:连接三角形两边中点的线段叫做中位线。
23.轴对称图形:一条物体沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
24.直接开平方法:形如x2=p或者(nx+m)2=p(p≥0)的.一元二次方程可采用直接开平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常数项移到方程的右边,两边加上一次项系数的一半的平方,再用右边的式子除以左边的式子,得到一个平方的形式,再用直接开平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:将一元二次方程分解成两个一次因式的积等于0的一元二次方程,然后将各个因式分解,得到一元一次方程,再用直接开方法求解一元一次方程的方法。
二、初中数学基本运算
1.整式:单项式和多项式的统称。
2.单项式:由数字和字母的积组成的代数式叫做单项式。单独的一个数字或字母也叫做单项式。
3.多项式:几个单项式的和叫做多项式。每个单项式叫做多项式的项。其中不含字母的项叫做常数
初中数学知识点汇总 篇6
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的`规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
初中数学知识点汇总 篇7
1.有理数:
凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0?a+b=0?a、b互为相反数。
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的`倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(—a)n=—an或(a —b)n=—(b—a)n,当n为正偶数时:(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:先乘方,后乘除,最后加减。
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题。
体验数学发展的一个重要原因是生活实际的需要。激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
初中数学知识点汇总 篇8
平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系:
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的`构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解定义:
把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:
①结果必须是整式
②结果必须是积的形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
公因式:
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:
①系数是整数时取各项最大公约数。
②相同字母取最低次幂
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。
②确定商式
③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
初中数学知识点汇总 篇9
初中数学例题的知识点梳理
有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。【注】“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)
单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(—,+),(—,—)和(+,—),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:
正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减。
特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
数字巧记:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(粮食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山药,六两)
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
学霸分享的数学复习技巧
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
数学解题方法分别有哪些
1、配方法
所谓的公式是使用变换解析方程的`同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。
2、因式分解法
因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。
3、换元法
替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。
4、判别式法与韦达定理
一元二次方程ax2+ bx+ c=0(a、 b、 c属于R,a≠0)根的判别,= b2—4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。
韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。
5、待定系数法
在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。
数学经常遇到的问题解答
1、要提高数学成绩首先要做什么?
这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。
2、基础不好怎么学好数学?
对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。
3、是否要采用题海战术?
方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。
4、做题总是粗心怎么办?
很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。
初中数学知识点汇总 篇10
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2
圆的两条平行弦所夹的弧相等
3、圆是以圆心为对称中心的中心对称图形
4、圆是定点的.距离等于定长的点的集合
5、圆的内部可以看作是圆心的距离小于半径的点的集合
6、圆的外部可以看作是圆心的距离大于半径的点的集合
7、同圆或等圆的半径相等
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12、①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
14、切线的性质定理:圆的切线垂直于经过切点的半径
15、推论1经过圆心且垂直于切线的直线必经过切点
16、推论2经过切点且垂直于切线的直线必经过圆心
17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18、圆的外切四边形的两组对边的和相等,外角等于内对角
19、如果两个圆相切,那么切点一定在连心线上
20、
①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-rr)
④两圆内切d=R-r(R>r)
⑤两圆内含dr)
初中数学知识点汇总 篇11
第一章 丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形
生活中的立体图形
柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
正有理数 整数
有理数 零 有理数
负有理数 分数
2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:
(1)五种运算:加、减、乘、除、乘方
多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:减去一个数,等于加上这个数的相反数!
有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
有理数除法法则:
两个有理数相除,同号得正,异号得负,并把绝对值相除。
0除以任何非0的数都得0。
注意:0不能作除数。
有理数的乘方:求n个相同因数a的积的运算叫做乘方。
正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。
(2)有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。
(3)运算律
加法交换律 加法结合律
乘法交换律 乘法结合律
乘法对加法的分配律
8、科学记数法
一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。(n=整数位数-1)
第三章 整式及其加减
1、代数式
用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数,如应写作;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般写成分数的形式,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米。
2、整式:单项式和多项式统称为整式。
①单项式:都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。
注意:1.单独的一个数或一个字母也是单项式;2.单独一个非零数的次数是0;3.当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1。
②多项式:几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。
3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
4、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
5、去括号法则
①根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
②根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
6、添括号法则
添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。
7、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
第四章 基本平面图形
2、直线的性质
(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的',无端点,不可度量,不能比较大小。
3、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的大小关系和它们的长度的大小关系是一致的。
4、线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。
5、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
6、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
7、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
-
78派网小编精心推荐:
- 初中数学知识点总结 | 小学数学知识点总结归纳 | 初中数学必考知识点归纳大全 | 高一数学公式和知识点笔记 | 初中数学知识点汇总 | 初中数学知识点汇总
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
8、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
9、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较,角可以参与运算。
10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。
12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。
第五章 一元一次方程
1、方程
含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。
5、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
6、解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)(4)合并同类项(5)将未知数的系数化为1
第六章 数据的收集与整理
1、普查与抽样调查
为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
2、扇形统计图
扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)
圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)
3、频数直方图
频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
4、各种统计图的特点
条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
初中数学知识点汇总 篇12
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等——补角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理
xxx两边的和大于第三边
16、推论
xxx两边的差小于第三边
17、xxx内角和定理:
xxx三个内角的和等于180°
18、推论1
直角xxx的两个锐角互余
19、推论2
xxx的一个外角等于和它不相邻的两个内角的和
20、推论3
xxx的一个外角大于任何一个和它不相邻的内角
21、全等xxx的对应边、对应角相等
22、边角边公理(SAS):有两边和它们的夹角对应相等的两个xxx全等
23、角边角公理(ASA):有两角和它们的夹边对应相等的
两个xxx全等
24、推论(AAS):有两角和其中一角的对边对应相等的两个xxx全等
25、边边边公理(SSS):有三边对应相等的两个xxx全等
26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角xxx全等
27、定理1
在角的平分线上的点到这个角的两边的距离相等
28、定理2
到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、推论1
等腰xxx顶角的平分线平分底边并且垂直于底边
31、推论2
等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;
32、推论3
等边xxx的各角都相等,并且每一个角都等于60°
33、等腰xxx的判定定理
如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)
34、等腰xxx的性质定理
等腰xxx的两个底角相等
(即等边对等角)
35、推论1
三个角都相等的xxx是等边xxx
36、推论
有一个角等于60°的等腰xxx是等边xxx
37、在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角xxx斜边上的中线等于斜边上的一半
39、定理
线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1
关于某条直线对称的两个图形是全等形
43、定理
如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3
两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理
直角xxx两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果xxx的三边长a、b、c有关系a2+b2=c2,那么这个xxx是直角xxx
48、定理
四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理
n边形的内角的和等于(n-2)×180°
51、推论
任意多边的外角和等于360°
52、平行四边形性质定理1
平行四边形的对角相等
53、平行四边形性质定理2
平行四边形的对边相等
54、推论
夹在两条平行线间的平行线段相等
55、平行四边形性质定理3
平行四边形的对角线互相平分
56、平行四边形判定定理1
两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2
两组对边分别相等的四边
形是平行四边形
58、平行四边形判定定理3
对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4
一组对边平行相等的四边形是平行四边形
60、矩形性质定理1
矩形的四个角都是直角
61、矩形性质定理2
矩形的对角线相等
62、矩形判定定理1
有三个角是直角的四边形是矩形
63、矩形判定定理2
对角线相等的平行四边形是矩形
64、菱形性质定理1
菱形的四条边都相等
65、菱形性质定理2
菱形的.对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1
四边都相等的四边形是菱形
68、菱形判定定理2
对角线互相垂直的平行四边形是菱形
69、正方形性质定理1
正方形的四个角都是直角,四条边都相等
70、正方形性质定理2
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1
关于中心对称的两个图形是全等的
72、定理2
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理
等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理
在同一底上的两个角相等的梯
形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理
如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1
经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2
经过xxx一边的中点与另一边平行的直线,必平分第三边
81、xxx中位线定理
xxx的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例
87、推论
平行于xxx一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理
如果一条直线截xxx的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于xxx的第三边
89、平行于xxx的一边,并且和其他两边相交的直线,所截得的xxx的三边与原xxx三边对应成比例
90、定理
平行于xxx一边的直线和其他两边(或两边的延长线)相交,所构成的xxx与原xxx相似
91、相似xxx判定定理1
两角对应相等,两xxx相似(ASA)
92、直角xxx被斜边上的高分成的两个直角xxx和原xxx相似
93、判定定理2
两边对应成比例且夹角相等,两xxx相似(SAS)
94、判定定理3
三边对应成比例,两xxx相似(SSS)
95、定理
如果一个直角xxx的斜边和一条直角边与另一个直角xxx的斜边和一条直角边对应成比例,那么这两个直角xxx相似(HL)
96、性质定理1
相似xxx对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2
相似xxx周长的比等于相似比
98、性质定理3
相似xxx面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理
不在同一直线上的三点确定一个圆。
110、垂径定理
垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2
圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理
一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3
如果xxx一边上的中线等于这边的一半,那么这个xxx是直角xxx
120、定理
圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交
0
②直线L和⊙O相切
d=r
③直线L和⊙O相离
d>r
122、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理
圆的切线垂直于经过切点的半径
124、推论1
经过圆心且垂直于切线的直线必经过切点
125、推论2
经过切点且垂直于切线的直线必经过圆心
126、切线长定理
从圆外一点引圆的两条切线相交与一点,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理
弦切角等于它所夹的弧对的圆周角?
129、推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论
如果弦与直径垂直相交,那么弦的一半是它分直径xxx的两条线段的比例中项
132、切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?
133、推论
从圆外一点引圆的两条割线,这一点到每条
割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离
d>R+r
②两圆外切
d=R+r
③两圆相交
R-r<d<R+r(R>r)
④两圆内切
d=R-r(R>r)
⑤两圆内含
d<R-r(R>r)
136、定理
相交两圆的连心线垂直平分两圆的公共弦
137、定理
把圆平均分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理
正n边形的半径和边心距把正n边形分成2n个全等的直角xxx
141、正n边形的面积Sn=pn*rn/2
p表示正n边形的周长
142、正xxx面积√3a^2/4
a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180——》L=nR
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长=d-(R-r)
外公切线长=d-(R+r)
-
为了您方便浏览更多的初中数学知识点汇总网内容,请访问初中数学知识点汇总
本文来源:http://www.78pi.com/zonghe/5253.html